Programming, Data Structures and Algorithms in Python
Prof. Madhavan Mukund
Department of Computer Science and Engineering
Chennai Mathematical Institute,Madras

Week - 05
Lecture - 04
String Processing

(Refer Slide Time: 00:02)

String processing

» Easy to read and write text files

« String processing functions make it easy to
analyse and transform contents

» Search and replace text

* Export spreadsheet as text file (csv) and process
columns

The last lecture we saw how to read and write text files. And reading and writing text
invariably involves processing the strings that we read and write. And so, Python has a

number of string processing functions that make it easier to modify this content.

So usually, you are reading and writing files in order to do something with these files,
and to do something with this you can use built in string functions which are quite
powerful. Among other things, what you can do with these string functions is for
example, search for text or search and replace it. A typical use of string processing for a
file is when we take something like a spread sheet and export it as text. There is
something called a comma separated value format CSV, where the columns are output
separated by commas as text. Now, what we can do with a string file is to read such a file
line by line and in each line extract the columns from the text by reading between the

commas. So, we will see all this in this lecture.

381

(Refer Slide Time: 01:04)

rip() removes leading whitespace

» s.strip() removes leading and trailing
whitespace

The first example of a string command that we already saw last time is the commands to
strip white space right. We have rstrip, which we used for example to remove the trailing
whitespace backslash n in our lines, and we had Istrip to remove leading whitespace, and

we had strip which removes it on both directions. Let us see how this works.

(Refer Slide Time: 01:30)

Let us create a string which as whitespace before and afterwards, so let us put some
spaces may be a tab and then the word hello and then two tabs. We have a string which

has whitespace and you can see the tabs are indicated by backslash t and blanks. Now, if

382

we want to just strip from the right we say t is equal to s dot rstrip. Remember this strip
command strings are immutable right it won't change s it will just return a new string, if [
say tis s dot r strip it will strip to the whitespace to the right and give me t, if I look at t it
has everything up to hello but not that tab and the space afterwards.

Similarly, if I say t is s dot | strip it will remove the ones to the left now t will start with
hello, but it will read have the whitespace at the end. Finally, if [say t is s dot strip then
both sides are gone and I will just get the word that I want. This is useful because when
you ask people to type things and forms for example, usually if they leave some blanks
before and after, so if you want everything before the first blank to be lost and the last
blank only keep the text in between then you can use the combination of Istrip, rstrip or

just strip to extract the actual data that you want from the file.

(Refer Slide Time: 02:43)

Searching for text

s. find(pattern)

* Returns first position in s where pattern occurs, -1 if
no occurrence of pattern
s. find(pattern,start,end)

* Search for pattern in slice s[start:end]
s.index(pattern), s.index(pattern,l,r)

* Like find, but raise ValueError if pattern not found

The next thing that may we want to do is to look text in a string. There is a basic
command called find. So, if s a string and pattern is another string that I am looking for
in s, s dot find pattern will return the first position in s which pattern occurs. And if
pattern does not occur, so the positions will there obviously be between 0 and the length
of s minus 1. We already wrote some our own implementation of this earlier. So, if it

does not occur it will give you minus 1.

Sometimes you may not want to search entire string, so pattern takes an optional pair of

argument start and end in which case instead of looking for the pattern from the entire

383

string it looks at a slice from start to end with the usual convention that this is the
position from start to end minus 1. There is another version of this command called
index. And the difference between find and index is what happens when the pattern is
not found. In find when the pattern is not found you get a minus 1, in index when the
pattern is not found you get a special type of error in this case a value error. So again let

us just see how these things actually work.

(Refer Slide Time: 03:54)

So, we have a string here s which contains the word "brown fox grey dog brown fox."
Now if I ask it to look for the first occurrence of the word "brown", then it will return the
position 0 because it is right there at the beginning of string. If on the other hand I do not
want this position, but I wanted to say starting from position 5 and going to length of s
for example, then it will say 19 and if you count you will find that the second occurrence

of brown is at position 19.

If on the other hand I look for something which is not there like "cat" then find will
return minus 1, so minus 1 is not the error but the indication that the string was not
found. The difference with index is that if I give index the same thing instead of a minus
1 it gives me a value error saying the substring does not occur right this is how find and

index work.

384

(Refer Slide Time: 04:53)

Search and replace

s.replace(fromstr,tostr)

* Returns copy of s with each occurrence of
fromstr replaced by tostr

s.replace(fromstr,tostr,n)
* Replace at most first n copies

» Note that s itself is unchanged — strings are
immutable

The next natural thing after searching is searching and replacing. If I want to replace
something I give it two strings what I am searching for and what I am replacing it with
and it will return a copy of s with each occurrence of the first string replaced by the
second string. Now this can be controlled in the following ways; supposing, I do not
want to each occurrence, but I only want say the first occurrence or the first three

occurrences.

So, I can give it an optional argument saying how many such occurrences starting from
the beginning should be replaced. It says replace at most the first n copies and notice that
like and strip and all that, here it's because changing this string replacing something by
something else, is not that s is going to change because strings are immutable is going to

return us the transform string. So let us look at an example.

385

(Refer Slide Time: 05:45)

Once again let us see our old example; s is "brown fox grey dog brown fox" and now
supposing I want to replace "brown" by "black", then I get 'black fox grey dog black fox.'
If I say only want 1 to be replaced then I get 'black fox grey dog' where the second
brown is left unchanged. Now you may ask what happens if I have this pattern it does
not neatly split up if I have the different copies of brown overlaps. Supposing, I have

some stupid string like "abaaba" and now I say replace all "aba" by say "DD".

Now the question is, will it find two aba s or 1 aba, because there is an aba starting at
position 0, there is also an aba in the second half of the string starting at position 2. The
question is will it mark both of these and replace them by DD, well, it does not because it
does it sequentially so it first takes the first aba, replaces it by DD, at this point the

second aba has been destroyed. So it will not find it.

Whereas, if I had for instance two copies of this disjoint then it would have correctly
found this and given me DD followed by DD. So, there is no problem about overlapping
strings it just does it from right to left and it makes sure that the overlap string is first

written, so it will not the second copy will not get transformed.

386

(Refer Slide Time: 07:17)

Splitting a string

+ Export spreadsheet as “comma separated value” text
file

» Want to extract columns from a line of text

Split the line into chunks between commas
columns s.split(",")

» Can split using any separator string

» Split into at most n chunks

columns S.SpLLECGE Tataen)

The next thing that we want to look at is splitting a string. Now when we take a
spreadsheet and write it out as text, usually what happens is that we will have an output
which looks like this. The first column would be written followed by comma then second
column, so if we had three columns then the first column set 6 second column set 7 and
the third was string hello, then we write it out a text as you will get 6, 7 and "hello".
Actually "hello" is a bit of problem because it has double quotes let us not use hello let
us use something simpler. So let us just say that we had three numbers 6, 7 and 8 for

example.

Now, what we want to do is we want to extract this information. So, we want to extract
the individual 6, 7 and 8 that we had as three values. So what we need to do is look for
this text between the strings, so we want to split the column into lines into chunks
between the commas and this is done using the split command. So, split takes a string s
and takes a character or actually could be any string and it splits the columns it gives you
a list of values that come by taking the parts between the commas. So, up to the first
comma is a first thing. So columns is just a name that we have used, it could be any list.
The first item of the list will be up to the first comma then between the first and second

comma and so on and finally after the last comma.

Comma in this case is not a very special thing you can split using any separator string.

And again just like in replace we could control how many times we replaced, here we

387

can also control how many splits you make. So, you can say split according to this string
notice that this could be any string so here we are splitting it according to space colon
space. But we are saying do not make more than n chunks, if we have more than n
columns or whatever chunks which come like this beyond a certain point we will just

lump it as one remaining string and keep it with us. So again let us see how this works.

(Refer Slide Time: 9:22)

Suppose this is our line of text which I will call CSV line it is a sequence of values
separated by commas notice it is a string. Now if I say CSV line dot split using comma
as a separator and then I get a list of values the string 6, the string 7, the string 8.
Remember this is exactly like what we said about input it does not get you the values in
the form that you want you then have to convert them using int or these are still strings.
So, it just takes a long string and splits it into a list of smaller strings. Now here there are
three elements so if I say for example I only want position 0, 1, 2. So, if I say I only
wanted to do it once then I get the first 6, but then 7 and 8 does not get split because it

only splits once.

Now, if I change this to something more fancy like say hash comp question mark. So
now I have a different separator it's not a single character, but hash question mark then I
can say split according to hash question mark and this will give me the same thing. You
can split according to any string it's just a uniform string. There are more fancy things

you can do with regular expression and all that, but we won't be covering that for now.

388

As long as you have a fixed string which separates your thing you can split according to

that fixed string.

(Refer Slide Time: 10:49)

Joining strings

* Recombine a list of strings using a separator

columns = s.split(",")
joinstring = ","

csvline = joinstring.join(columns)
date "16"

month "Q8"

year "2016"

today "-".301n([date,month,year])

So, the inverse operation of split would be to join strings. Supposing, we have a
collection of strings and I want to combine it in to a single string separate each of them
by a given separator. So as an example, supposing we take s which is some CSV output
and we split it into columns on comma, and then we can take join string and set it to the

value comma and then use that to join the columns.

Now this is a bit confusing, so join is a function which is associated with a string. In this
case a string in concerned is a comma. So it says, more or less you are saying comma dot
join columns which is use comma to join columns. So, you have just given it a name here

join string is equal to comma and then CSV line is join string dot join columns.

So what this says is, use comma to separate so if at the end of this I had got like last time
6, 7 and 8, then this will now put them back as 6 comma 7 comma 8 into a single string.
Here is another example, here we have a date 16 a month 08 and a year 2016 given as

strings and I want to string it together into a date like we normally use with hyphens.

Here instead of giving an intermediate name to the hyphens and then saying hyphens dot
join I directly use this string itself, just want to illustrate that you can directly use this

joining string itself as a constant string and say use this to join this list of values. All you

389

need to make sure is what you have inside the join in the argument is a list of strings and
what you applied to is the string which will be used to join them. Let us just check that

this works the way we actually intended to do.

(Refer Slide Time: 12:38)

Let us directly do the second example. Supposing, we say date is 16, remember these are
all strings month is 08, year is 2016, and now I want to say what is the effect of joining

these three things using dash as separator and I get 16 dash 08 dash 2016.

(Refer Slide Time: 13:09)

Converting case
» Convert lower case to upper case, ...

* s.capitalize() — return new string with first
letter uppercase, rest lower

*» s.lower() — convert all uppercase to lowercase
* s.upper() — convert all lowercase to uppercase

e S.ti1tLe(), s.swapcase(),

390

So there are many other interesting things you can do with strings for example, you can
manipulate upper case and lower case. If you say capitalize, what it will do is it will
convert the first letter to upper case and keep the rest as lower case, if you say s dot
lower it will convert all upper case to lower case, if you say s dot upper it will convert all

lower case to upper case and so on.

There are other fancy things like s dot title. So, title will capitalize each word. This is
how it normally appears say in the title of a book or a movie. S dot swap case will invert
lower case to upper case and upper case to lower case and so on. So there are whole
collection of functions in the string thing which deal with upper case, lower case and

how to transform between these.

(Refer Slide Time: 13:52)

Resizing strings

s.center(n)

* Returns string of length n with s centred, rest blank
s.center(n,"*")

« Fill the rest with * instead of blanks
s.ljust(n), s.ljust(n,"*"), s.rjust(n), ..

« Similar, but left/right justify s in returned string

The other thing that you can do with strings is to resize them to fit what you want. So if
you want to have a string which is positioned as a column of certain width then we can
say that center it in a block of size n. So what this will do is it will return a new string

which is of length n with s centered in it.

Now by centering what we mean is that on either side there will be blanks instead of
blanks you can put anything you want like, stars or minuses. You can give a character
which will be used to fill up the empty space on either side rather than a blank. Now you
may not want it centered or you may not want to the left or the right, so you can for

example left justify during ljust or rjustify during rjust and again you can give an

391

optional character and so on. S, we can just check one or two of these just to see how

they work.

(Refer Slide Time: 14:46)

Suppose, we take a short string like 'hello' and now we center it in a large block of say
50. We say s dot center 50, then this gives us hello with a lot of blank spaces on either
side. Now we can replace those blank spaces by anything we want, so say minus sign
then we will get a string of a minus signs or hyphens before that. Now we can also say
that I want the thing left justified in this not a center. So if I do that then I will get hello

at the beginning and a bunch of minus signs, similarly with rjust and so on.

392

(Refer Slide Time: 15:23)

Other functions

* Check the nature of characters in a string
s.isalpha(), s.isnumeric(), ..
* Many other functions

* Check the Python documentation

Some of the other types of functions which we find associated to strings are to check
properties of strings. Does s consists only of the letters a to z and capital a to capital z. So
that is what s dot is alpha says is it an alphabetic string, if it is true it means it is, if it is
not it has at least one non alphabetic character. Similarly is it entirely digits, is numeric
will tell us if it is entirely digits. So, there is a huge number of string functions and there
is no point going through all of them in this thing, we will if we need them as we go

along we will use them and explain them.

But you can look at the Python documentation look under string functions and you will
find a whole host of useful utilities which allow you to easily manipulate strings. And
this is one of the reasons that Python is a popular language because you can do this kind
of easy text processing. So you can use it to quickly transform data from one format to
another and to you know change the way it looks or to resize it and so on. String
functions are an extremely important part of Pythons utility as a glue language for

transforming things from one format to another.

393

